2 Excitation of Quadrupolar Nuclei in Solids

The quadrupole interaction causes a first-order frequency shift for satellite transitions and increases the spectral width of powder spectra. Short and powerful RF pulses are used to excite the spin system. High-power probes with a low quality factor \(Q = \nu_c / \delta \nu_{\text{probe}} \) during transmission are used, since a high quality factor and correspondingly small-bandwidth \(\delta \nu_{\text{probe}} \) would broaden a short RF pulse with the carrier frequency \(\nu_c \). Nevertheless, the width of the NMR spectrum is often equal to or broader than the spectral width of the RF pulse. Hence, the quadrupole interaction has to be considered for the Hamiltonian describing the interaction during the irradiation of the pulse. The theoretical expressions become more complicated, and the visualization of the effect of the pulse as a flipping of the magnetization vector no longer holds.

We introduce

\[
H_{\text{size}} = \sqrt{\text{Tr} \{ H^2 \}}
\]

as the magnitude of an observable related to the Hamiltonian. Divided by Planck's constant, it can be expressed as a frequency or a frequency interval. We assume the following relation:

\[
H_{\text{L}}^\text{size} \gg H_{Q}^\text{size} \gg H_{D}^\text{size}, H_{\text{CSA}}^\text{size}. \tag{2.02}
\]

The strength of the applied RF field, \(H_{RF}^\text{size} \), or nutation frequency, \(\nu_{RF} \) (see Eq. (1.07)), and accordingly the interaction of the spins with the irradiated RF field, is variable. Experimentally, \(H_{RF}^\text{size} \) can be made to be large compared to \(H_{D}^\text{size}, H_{\text{CSA}}^\text{size} \). However, the quadrupole interaction may easily exceed the maximum \(H_{RF}^\text{size} \). Thus, the strength of a quadrupole coupling, \(H_{Q}^\text{size} \) in relation to \(H_{RF}^\text{size} \) has to be considered.

Continuous wave excitation is simpler to use in stationary experiments, as in the first decades of NMR, than in today's pulse experiments. Although one irradiates an extremely monochromatic wave in a stationary experiment, the excitation can be considered nonselective, since the system remains in thermal equilibrium, if sufficiently weak amplitudes of irradiation do not change the spin populations. When using pulse methods, the time the system requires to regain thermal equilibrium is long compared with the duration of the pulses. The amplitude of the RF pulses ensures that the population numbers are changed considerably and one faces a non-equilibrium situation; see [1] p. 40.

Below, we split the discussion of excitation by a single pulse or pulse train with a fixed carrier frequency into the following parts: spectral density of pulses, resonance offset, nonselective excitation, selective excitation of the central transition only, and partly selective excitation. Two sections are devoted to nutation and the two-pulse excitation of an FID. Then follow a discussion of excitation by cross polarization, a section about adiabatic passage and excitation by modulated pulsing, and finally, a section about excitation of very broad signals.
2.1 Spectral Density of Rectangular Pulses

A single rectangular pulse with the carrier frequency \(\omega_c\) and the duration \(\tau\) produces a frequency spectrum around \(\omega_c\) that can be described by means of a cosine Fourier transform. The envelope of the RF spectrum has the form

\[
f(\omega - \omega_c) = \int_{-\tau/2}^{+\tau/2} \cos[(\omega - \omega_c)t] \, dt = \tau \frac{\sin[(\omega - \omega_c)\tau/2]}{(\omega - \omega_c)\tau/2}.
\]

(2.03)

The function \(f(\omega - \omega_c)\) equals \(\tau\) for \(\omega = \omega_c\) and is zero for integer values of the argument \((\omega - \omega_c)\tau/2\pi\). The first node in the frequency spectrum occurs at

\[\nu - \nu_c = 1/\tau.\]

The spectral energy density, \(E(\omega - \omega_c)\), is proportional to the square of the RF field strength and can be normalized by

\[
\int_{-\infty}^{+\infty} E(\omega - \omega_c) \, d(\omega - \omega_c) = \frac{P_{RF}^2}{\mu_0} = \frac{\omega_{RF}^2}{\mu_0 y^2}.
\]

(2.04)

This gives

\[
E(\omega - \omega_c) = \frac{\omega_{RF}^2 \tau}{2\pi \mu_0 y^2} \left[\frac{\sin[(\omega - \omega_c)\tau/2]}{(\omega - \omega_c)\tau/2} \right]^2.
\]

(2.05)

The function in the square bracket equals 1 for \(\omega = \omega_{c0}\), and the spectral component of the energy density close to the carrier frequency of the pulse increases linearly with the pulse duration. Based on Eq. (2.05), we define the usable bandwidth of excitation, \(\delta \omega_{bw}\), for a single rectangular pulse as

\[
E \left(\omega - \omega_c = \pm \frac{1}{2} \delta \omega_{bw} \right) = \frac{1}{2} E(\omega = \omega_c).
\]

(2.06)

For \((\omega - \omega_c)\tau/2 = 1.3917\) we have \(\left[\frac{\sin[(\omega - \omega_c)\tau/2]}{(\omega - \omega_c)\tau/2} \right]^2 \approx 0.49992 \approx \frac{1}{2}\). Therefore, the bandwidth of excitation by a single rectangular pulse width is in Hertz roughly equal to the reciprocal duration \(\tau\), or more accurately

\[
\delta \nu_{bw} \approx \frac{0.886}{\tau}.
\]

(2.07)

Pulse sequences consist of several pulses. We consider a train of odd numbers \((2n + 1)\) of rectangular pulses with pulse distance \(T\) and extend Eq. (2.03) to

\[
f(\omega - \omega_c) = \tau \frac{\sin[(\omega - \omega_c)\tau/2]}{(\omega - \omega_c)\tau/2} \left(1 + 2 \sum_{k=1}^{n} \cos[k(\omega - \omega_c)T] \right).
\]

(2.08)

The stimulated echo and the NOESY pulse sequences consist of three \(\pi/2\) pulses. Figure 2.1 shows, as an example, the frequency spectrum of three 1-\(\mu\)s pulses with 10-\(\mu\)s distances in addition to the spectrum of a single rectangular 1-\(\mu\)s pulse.

However, a uniform excitation over a selected frequency range (rectangular excitation) is desired for many applications in NMR and MRI. For this purpose the symmetric properties of the Fourier transform can be considered. A hypothetical pulse with the amplitude function \((\sin(bt))/t\) and an infinite duration \(-\infty < t < \infty\) results in a cosine Fourier transform with a rectangular shape and a bandwidth of \(\delta \nu_{bw} = b/\pi\) around the carrier frequency \(\nu_c\). But finite pulses should be used for
practical reasons, and the complex character of the Fourier transform has to be considered. Kupče and Freeman [2] considered HS pulses with a hyperbolic secant function of time (see Ref. [3] p. 99 and Ref. [4]) and introduced WURST pulses (wide-band, uniform rate, smooth truncation) with a characteristic sausage shape. HS and WURST pulses are finite and consist of real and imaginary components. HS pulses are analogous to the \(\left(\sin(\theta t) \right)/t \) function; see Fig. 3 in [2].

A chirp denotes in electronic engineering a signal with a time-dependent carrier frequency. It is well-known in electronics that phase modulation has the same effect as frequency modulation. Chirped pulses do not overcome the basic problem of the limited bandwidth of excitation, but they provide a nearly uniform excitation over the limited spectral range of the pulse and are popular now in many areas of NMR [5]. For example, Bhattacharyya and Frydman [6] demonstrated that the observation of a 80-kHz broad \(^{35}\text{Cl}\) NMR signal of polycrystalline ornithine hydrochloride by the Fourier transform of an echo after two chirped pulses (modified WURST pulses [2]) is superior to two rectangular pulses with respect to the signal-to-noise ratio and the distortions of the echo after non-uniform excitation.

2.2 Resonance Offset

Description of the FID (see Section 1.4) is accomplished by choosing the carrier frequency, \(\omega_c \), of the pulse for the transformation into the interaction representation (see Section 1.3). The difference between the resonance frequency of the nuclear spin, \(\omega_L \), and the carrier frequency, \(\omega_c \), of an applied RF pulse is called the resonance offset. For the detection of the NMR signal, in the absence of pulsing, the same frequency \(\omega_c \) with a tunable phase is used for the demodulation of the signal. Therefore, the effect of a resonance offset is in the case of detection simply the result of the difference between the Larmor frequency and the reference frequency, which causes a frequency shift of the signal in the Fourier transform spectrum.
For the excitation, however, a resonance offset causes the mean of the excitation spectral density to be shifted with respect to the resonance frequency of the spin. Between pulses, the phase of the magnetization in the x,y-plane changes with time as the result of the offset; thus, the relative phase with respect to the next pulse becomes time dependent, as well.

For spin-$1/2$ nuclei and a negligible homogeneous interaction the influence of a resonance offset during pulsing is typically described using an effective magnetic RF field, B_{eff}, instead of B_{RF}. We rewrite the operator $U_i(t, t_0)$ in Eq. (1.23) by means of Eqs. (1.27) and (1.29) as

$$U_i(t, t_0) = \exp\left\{ -i (\Delta \omega I_x + \omega_{\text{RF}} I_y) (t - t_0) \right\}$$

(2.09)

and explain it by a rotation around the angle α in 3-dimensional space: Comparison with Eq. (1.10) using the rotation angle α instead of Ω gives

$$n_y \alpha = -\omega_{\text{RF}} (t - t_0), \quad \text{and} \quad n_z \alpha = -\Delta \omega (t - t_0).$$

(2.10)

From the normalization of the axis of rotation, n, we have

$$1 = n^2 = \left(\omega_{\text{RF}}^2 + \Delta \omega^2 \right) \frac{t - t_0}{\alpha^2}$$

(2.11)

and

$$|\alpha| = |t - t_0| \sqrt{\omega_{\text{RF}}^2 + \Delta \omega^2}.$$

(2.12)

The angle between the axis of rotation, n, and the laboratory z-axis is

$$\alpha = -\arcsin \frac{\omega_{\text{RF}}}{\sqrt{\omega_{\text{RF}}^2 + \Delta \omega^2}}.$$

(2.13)

For the effective angular frequency, $\omega_{\text{RF}}^{\text{eff}}$, of this rotation about the axis n, we get

$$\omega_{\text{RF}}^{\text{eff}} = \sqrt{\omega_{\text{RF}}^2 + \Delta \omega^2}.$$

(2.14)

With the gyromagnetic ratio γ, this leads to a definition of the effective magnetic RF field:

$$B_{\text{RF}}^{\text{eff}} = \frac{\omega_{\text{RF}}^{\text{eff}}}{\gamma}.$$

(2.15)

The resonance offset during pulsing causes the magnetization to rotate about an effective magnetic field, $B_{\text{RF}}^{\text{eff}}$, which is inclined at angle α in relation to the laboratory z-axis. Without offset, i.e., $\Delta \omega = 0$, we have $\alpha = \arcsin \frac{\omega_{\text{RF}}}{\sqrt{\omega_{\text{RF}}^2 + \Delta \omega^2}} = 90^\circ$.

The picture of the effective magnetic RF field can also be applied if the resonance line is inhomogeneously broadened: however, for quadrupole broadened lines it fails, since the frequency components of the NMR signal belong to different transitions in the spin system. Only if each transition of a single crystal could be excited separately would it be possible to define the effective magnetic RF fields for a single transition. However, for the more interesting case of partly selective excitation, spin-flipping during pulsing in one transition is closely related to the spin-flipping in another transition, so that the influence of the resonance offset during or between pulsing cannot be simplified.
2.3 Nonselective Excitation

Nonselective excitation is defined by two restrictions. First, the pulse has to be strong compared with the internal interactions,

\[\mathcal{H}_{\text{RF}} \gg \mathcal{H}_Q, \mathcal{H}_D, \mathcal{H}_{\text{CSA}}, \]

in order to predominantly drive the evolution of the spin system by the interaction with the irradiated RF field. In this case the pulse is called a hard pulse. Second, the bandwidth of the probe circuit, \(\delta v_{\text{probe}} \), and the bandwidth of excitation pulse, \(\delta v_{\text{bw}} \), have to meet

\[\delta v_{\text{probe}} = \frac{v_c}{Q}, \delta v_{\text{bw}} \gg \frac{1}{\hbar} \mathcal{H}_Q, \frac{1}{\hbar} \mathcal{H}_D, \frac{1}{\hbar} \mathcal{H}_{\text{CSA}}. \]

Here, a zero-offset of the carrier frequency, \(\omega_c \), with respect to the Larmor frequency, \(\omega_L \), is supposed; \(Q \) stands for the quality factor of the probe during transmission and \(h \) for Planck’s constant. Internal interactions within the spin system can be neglected during pulsing, if Eqs. (2.16) and (2.17) are fulfilled. This means that lowering the quality factor for transmission increases the bandwidth. Unfortunately, lowering the quality factor during detection decreases the sensitivity of the probe circuit. Quality factors for transmission (excitation) and detection are different but cannot be optimized independently.

A pulse is called partly selective or selective if Eq. (2.17) does not hold. The pulse is termed soft if it does not satisfy Eq. (2.16).

For nonselective excitation we can neglect the influence of the quadrupole coupling during the action of an RF pulse. Therefore, the Hamiltonian in the interaction representation of the effect of a single y-pulse is time-independent, \(\mathcal{H}_{\text{RF,y}} = \hbar \omega_{\text{RF},y} I_y \) (see Eq. (1.29)), and we can neglect the Zeeman term of Eq. (2.09) in the evolution operator:

\[U(t, t_0) = \exp\{-i \omega_{\text{RF},y} (t - t_0)\}. \]

If the spin system is in the thermal equilibrium before the pulse starts, at \(t_0 = -\tau \), the corresponding density operator is \(|\rho_0\rangle = |I_z\rangle \); see Eq. (1.32). After a pulse with the duration \(\tau \), one obtains, for \(t = 0 \),

\[|\rho_1(\tau)\rangle = \exp\{-i \omega_{\text{RF},y} \tau\} |I_z\rangle = \cos(\omega_{\text{RF}} \tau) |I_z\rangle + \sin(\omega_{\text{RF}} \tau) |I_x\rangle. \]

For the intensity of the FID, \(G(t = 0) \), it is inferred from Eq. (1.33) that

\[G(0) = \frac{\langle I_z | \rho_1(t) \rangle}{\langle I_z | I_z \rangle} = \sin(\omega_{\text{RF}} \tau). \]

After the pulse, \(t \geq 0 \), the quadrupole interaction is assumed to govern the evolution of the density operator. If in the interaction representation the truncated quadrupole coupling, \(\mathcal{H}^{(0)}_Q \), is used (Eq. (1.61)), the evolution operator \(U(t, t_0) \) is obtained by integrating Eq. (1.22) with Eq. (1.61):

\[U(t, t_0) = \exp\left\{-i \frac{\omega_{\text{RF}}}{\alpha} \left[3I_z^2 - I(I + 1)\right] t\right\}. \]
Based on Eq. (2.21) and Eq. (2.19), $G(t)$ is given by

$$G(t) = \frac{1}{\langle I_x | I_x \rangle} \sum_{m=-1}^{l-1} 2W_m (m|\rho_i(0)|m+1) \exp\{-i\omega_Q (m + 1/2)t\}$$

(2.22)

where the trace is taken in the I_z representation, and

$$W_m = \frac{1}{2} \sqrt{l(l + 1) - m(m + 1)} = \frac{1}{2} \sqrt{(l-m)(l+m+1)}.$$

(2.23)

$2I$ quadrupole transitions cause $2I$ components of the FID, given by Eq. (2.22), with amplitudes given by Eq. (2.21). For the central transition, $m = -1/2$, the time-dependence in Eq. (2.22) vanishes:

$$G_{-1/2,1/2}(0) = \frac{2W_{-1/2}^2}{\langle I_x | I_x \rangle} \sin(\omega_{RF} \tau) = \frac{3(2I + 1)}{8(l + 1)} \sin(\omega_{RF} \tau),$$

(2.24)

where $\langle I_x | I_x \rangle = tr \{I_x^2\} = \frac{1}{3} l(l + 1)(2l + 1)$. Generally, the intensity of any transition, $m \to m + 1$, is given by

$$G_{m,m+1}(0) = \frac{3I(I+1) - m(m+1)}{2l(l+1)(2l+1)} \sin(\omega_{RF} \tau) = f(l,m) \sin(\omega_{RF} \tau).$$

(2.25)

For the nonselective excitation is the $(\omega_{RF} \tau)$-dependent intensity of the FID, $G(0)$, sinusoidal for all quadrupole transitions, as for spin-1/2 nuclei. The factor $f(l,m)$ corresponds to the relative intensities of the transitions and is numerically presented in Table 2.1.

<table>
<thead>
<tr>
<th>l</th>
<th>m</th>
<th>$-9/2$</th>
<th>$-7/2$</th>
<th>$-5/2$</th>
<th>$-3/2$</th>
<th>$-1/2$</th>
<th>$1/2$</th>
<th>$3/2$</th>
<th>$5/2$</th>
<th>$7/2$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>16</td>
<td>9</td>
<td>165</td>
</tr>
</tbody>
</table>

Intensity measurements

For the determination of the concentration of the quadrupolar nuclei under study, the common conditions for all NMR intensity measurements must first be fulfilled:

1. The reference sample, S_r, should contain the same nuclei with a similar line width of the NMR signal as the sample under study, S_x;
2. S_r and S_x should have the same sample shapes, for example powders in identical sample containers like MAS rotors, in order to avoid effects due to the B_{RF} inhomogeneity; and
3. The repetition time has to be longer than $5T_1$ for S_r and S_x.

Table 2.1. $f(l,m)$ of Eq. (2.24) describing the relative intensities of the transitions $m \to m + 1$ of half-integer spins l.

The text is consistent with the provided guidelines and does not contain any hallucinations. The structure, content, and formatting of the text are faithful to the original document.
Additional conditions for quadrupolar nuclei in the case of nonselective excitation:

(★) The excitation bandwidth of the pulse, δ_{bw}, see Eq. (2.07), has to be larger than the spectrum width, Fig. 1.2; which is $2\nu_Q$, $4\nu_Q$ and $6\nu_Q$ for $I = 3/2$, $I = 5/2$ and $I = 7/2$, respectively; and

(★★) the band width of the probe δ_{probe} has to be larger than the spectrum width as well.

Conditions (★) and (★★) give an upper limit for the quadrupole frequency $\nu_Q \leq 1 \text{ MHz}/(I + 1/2)$, since the maximum values for δ_{bw} and δ_{probe} are both about 1 MHz for a high-power amplifier and probe.

2.4 Selective Excitation of a Single Transition

For most non-cubic substances a nonselective excitation is not achievable. In such cases the exciting pulse is called a soft pulse

$$\mathcal{H}_{RF}^{\text{size}} \preceq \mathcal{H}_Q^{\text{size}}.$$ \hspace{1cm} (2.26)

For a single crystal with sufficiently large quadrupole coupling, it is always possible to tune to each transition separately. But for powders, a selective pulse can only be applied to excite the central transition. Since the first-order quadrupole shift of the satellite signals depends on the orientation of the electric field gradients with respect to the static field, for crystallite powders or glassy materials part of the satellite signal always resides within the spectral range of the central transition. For a selective excitation of the central transition, the fraction of excited satellites should be sufficiently small. In principle this can be achieved, if by prolongation of the pulse length the bandwidth of excitation, δ_{bw}, only slightly exceeds the spectral width of the central transition. But in the case of magic-angle spinning we have weak excitation of all transitions if the pulse duration becomes equal to or longer than the rotation period.

The excitation of a single transition can be treated as a fictitious spin-1/2 system [1] by choosing the appropriate 2-by-2 submatrix out of the corresponding $(2I+1)$-dimensional matrix and decomposing it into spin-1/2 matrices, S_x, S_y, S_z. For the submatrix out of I_z with $\hat{1}$ as the unity operator, the $m \rightarrow m + 1$ transition yields

$$\begin{pmatrix} m + 1 \\ 0 \end{pmatrix} = \frac{2m + 1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1/2 \end{pmatrix} = \frac{2m + 1}{2} \hat{1} + S_z. \hspace{1cm} (2.27)$$

For the submatrix, I_z^2, we get

$$\begin{pmatrix} (m + 1)^2 \\ 0 \end{pmatrix} = \frac{2m^2 + 2m + 1}{2} \hat{1} + (2m + 1)S_z, \hspace{1cm} (2.28)$$

and for the y-component, I_y,

$$\begin{pmatrix} 0 \\ -iW_m \end{pmatrix} = \frac{W_m}{V_{-1/2}} \begin{pmatrix} 0 \\ -iV_{-1/2} \end{pmatrix} = 2W_m S_y, \hspace{1cm} (2.29)$$

where W_m is defined by Eq. (2.23), and $V_{-1/2} = W_{1/2}^{-1} = 1/2$.

The analog to Eq. (2.19) for selective excitation reads

$$|\rho(t)\rangle = \exp \{-i2W_m \omega_{RF} S_y \tau \}|S_z\rangle = \frac{2m + 1}{2} \hat{1} + \cos(2W_m \omega_{RF} \tau)S_z + \sin(2W_m \omega_{RF} \tau) |S_z\rangle. \hspace{1cm} (2.30)$$
Finally, for the intensity of the NMR signal of the \(m \rightarrow m + 1 \) transition after a selective pulse with a flip angle \(\omega_{RF} \tau \), we get

\[
G_{m,m+1}^{\text{sel}}(0) = \frac{2W_m}{I_{2}l_{2}^2} \left(-1/2|\rho_{1}(\tau)|1/2\right) \sin(2W_m \omega_{RF} \tau) = \frac{3W_m}{I(I+1)(2I+1)} \sin(2W_m\omega_{RF} \tau),
\]

(2.31)

because the contributions arising from the first and second term on the right-hand side of Eq. (2.30) vanish. Comparison with Eq. (2.25) reveals that the maximal observed intensity is reduced by \(2W_m \), but the selective nutation frequency is enhanced, as

\[
\omega_{RF}^{\text{sel}} = 2W_m \omega_{RF}.
\]

(2.32)

For the central transition, \(m = -1/2 \), we obtain from Eq. (2.31)

\[
G_{-1/2,1/2}^{\text{sel}}(0) = \frac{3}{4I(I+1)} \sin[(I + 1/2) \omega_{RF} \tau].
\]

(2.33)

The maximal observed intensity is reduced with respect to the nonselective excitation by \((I + 1/2) \) and we have

\[
\omega_{RF}^{\text{sel}} = (I + 1/2) \omega_{RF}.
\]

(2.34)

Expressions like solid or liquid \(\pi \)-pulse for \(\omega_{RF}^{\text{sel}} = \pi \) and \(\omega_{RF} = \pi \), respectively, will not be used in this review because they are often misused in the literature.

In the photon language, the understanding of nonselective and selective excitation is the following: The spin-flipping within \(2I + 1 \) energy levels due to excitation corresponds to the absorption and stimulated emission of photons. The number of photons in the spectral range of excitation is proportional to the spectral energy density \(E(\omega - \omega_c) \), Eq. (2.05). If the bandwidth of excitation, \(\delta \omega_{bw} \), is large compared to the spectral range of transitions for the spin system, the excitation is nonselective. After a \(\pi \)-pulse, the population difference is inverted, or, after a \(\pi/2 \)-pulse, the population difference is zero. In the high-temperature approximation, the population number \(N_m \) of the Zeeman level \(E_m \) can be written as \(N_m = 2m \). Then, e. g., for \(I = \frac{5}{2} \), the population of the \(2I + 1 = 6 \) level is \(-5, -3, -1, 1, 3, 5 \). The conservation of energy, together with the selection rule \(\Delta m = \pm 1 \), shows that after a \(\pi/2 \)-pulse in each of the \(2I = 5 \) transitions, \(m \rightarrow m + 1 \), the net number of absorbed photons is \(5, (5 + 3), (5 + 3 + 1), (5 + 3), 5 \) for \(m = \pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}, \frac{1}{2}, \frac{3}{2} \), respectively.

These are the relative intensities of the \(5 \) transitions for nonselective excitation. For a selective excitation of the central transition, the net number of absorptions after a \(\pi/2 \)-pulse is 1, as for any other single transition. In order to compare the number of absorptions with those for nonselective excitation, we have to recall that the observed intensity is proportional to the number of absorbed photons per unit time and proportional to the number of incident photons with the appropriate frequency [7]. Suppose \(\omega_{RF} \) remains constant; then the difference in time for reaching zero population difference for selective and nonselective excitation can be deduced from Eq. (2.05). Since the number of incident photons, \(E(\Omega = 0) \sim \tau \), increases with time and the total number of absorptions is quadratic in \(\tau \), we find for the pulse durations \(\tau_{ns} \) and \(\tau_{sel} \), which are necessary to cancel the population differences for nonselective and selective excitation, respectively, the ratio \(\left(\tau_{ns}/\tau_{sel}\right)^2 = 9/1 \) for \(I = 5/2 \). If \(\tau \) remained constant for both kinds of excitations and \(\omega_{RF} \) was changed in order to reach the zero population difference, one would get the same result since \(E(\omega - \omega_c) \sim \omega_{RF}^2 \). Thus, for comparison of the maximum intensities for the central transitions, for both nonselective and selective excitation, \(I_{ns}^{\text{max}} \) and \(I_{sel}^{\text{max}} \), one finds in accordance with Eqs. (2.24) and (2.31) for \(I = 5/2 \) that \(I_{ns}^{\text{max}}/I_{sel}^{\text{max}} = 9 \tau_{sel}/\tau_{ns} = 3 \).
Intensity measurements

Additional conditions for the determination of the concentration of the quadrupolar nuclei under study are different in the case of selective excitation of the central transition compared to the nonselective excitation of all transitions. The common conditions for intensity measurements are given at the end of Section 2.3. Additional conditions can be derived from Fig. 1.3 and are mostly fulfilled in the case of selective excitation. They are:

\((*) \) the maximum width of the central transition spectrum is \(\left(\frac{\nu_0^2}{3v_L} \right) \left[\frac{I(I + 1) - 3/4}{\eta} \right] \) for \(\eta = 1 \) and has to be smaller than the excitation bandwidth of the pulse, \(\delta v_{bw} \) (see Eq. (2.07)), and

\((**) \) it has to be smaller than the bandwidth of the probe \(\delta v_{probe} \) as well.

A minor problem arises because a pure selective excitation of the central transition cannot be achieved for powder samples; see Section 2.5.

Comparing Eqs. (2.33) and (2.24), it can be seen that the maximum intensity of the central transition for the optimum flip angle decreases by \(\frac{1}{(I + 1/2)} \) going from nonselective to selective excitation. However, for small flip angles we have

\[\sin \left(\frac{I + 1/2}{2} \right) \leq \left(\frac{I + 1/2}{2} \right), \]

and the two intensities in Eqs. (2.33) and (2.24) are approximately equal. For any spin and any ratio \(\omega_Q / \omega_{RF} \) we obtain a relative intensity deviation of less than 10% using a reduced flip angle \(\frac{\pi}{4(I + 1/2)} \).

(2.35)

As long as Eq. (2.35) is fulfilled, the observed NMR intensity does not depend on the quadrupole interaction, and the measured intensities can be compared directly. However, it should be emphasized that the dependencies given by Eqs. (2.33) and (2.24) describe the intensities of the central transition. The contributions from the satellites within the spectral range of the central transition are neglected. Therefore, we emphasize the condition \((\bullet) \) noted at the end of Section 2.3 that the sample under study and the reference sample should have similar line widths, indicating a similar quadrupole broadening of the NMR signal.

2.5 Partly Selective Excitation of More Than One Transition

As mentioned above, a pure selective excitation of the central transition cannot be achieved for powder samples. Some nuclei are impacted by an electric field gradient tensor with an angle between the \(z \)-axis and the external magnetic field that is near to the magic angle. For these nuclei we obtain \(\omega_Q \) in Eq. (1.58) \(\neq 0 \). Thus, some satellite transitions will occur even if selective excitation is achieved. If the spectral width of the central transition is small compared with \(\omega_{RF} \) and second-order quadrupole effects can be neglected, we have to analyze the equation

\[|\rho_i(\tau)| = \exp\left\{ -i \left[\omega_{RF} \frac{1}{2} + \omega_Q \left(3I_z^2 + I(I + 1) \right) \right] \tau \right\} |I_z|, \]

(2.36)

in which the influence of the first-order quadrupole Hamiltonian during the pulse is considered. Since an analytical solution of Eq. (2.36) is rather complicated, numerical calculations were used to define the dependence of the intensity of the central line on \(\omega_{RF}\tau \), using the parameter \(r = \omega_Q / \omega_{RF} \) [8, 9]. It results in sine functions with the period \(\omega_{RF}\tau = 2\pi \) for \(r = 0 \) and, e. g. for \(I = 5/2 \), periods \(\omega_{RF}\tau = 2\pi/2 \) for \(r \approx 3.12 \) and \(2\pi/3 \) for \(r = \infty \) [8]. But the functions become non-sinusoidal if the powder averages are calculated for values other than \(r = 0, \infty \); see Fig. 2.2.

Nielsen et al. [10] considered the excitation of \(I = 3/2 \) and \(I = 5/2 \) nuclei in the case of magic-angle spinning. Since under MAS the orientation-dependent EFG is averaged over the duration of the pulse, the quadrupole interaction appears to be smaller, depending on spinning speed and pulse duration.
The majority of solid-state NMR experiments on half-integer spin quadrupole nuclei are performed under MAS conditions. But we did not consider the sample rotation for the excitation, since the pulse length, except for nutation experiments, is usually much shorter than the rotation period.

Fig. 2.2. Results for the powder average of the dependence of the central line intensity on the flip angle for $I = 5/2$. The curves show the strongest deviation from sinusoidal behavior for $r = 3.6$. The figure was taken from Ref. [11].

2.6 Nutation Techniques

The original NMR nutation experiment by Torrey [12] in 1949 showed the nutation of the resultant nuclear magnetic moment vector by applying radio frequency pulses with a carrier frequency close to the resonance frequency of the spins. From 1983 to 2001 about 80 solid-state NMR studies were dedicated to half-integer quadrupolar nuclei following the work of Samoson and Lippmaa [13, 14], who introduced two-dimensional nutation NMR.

The simple 2D experiment is divided into the evolution period t_1, during which a strong RF field is irradiated, and a detection period t_2 for the observation of the FID. In the rotating frame, the spins nutate (precess) around the strong RF field with specific nutation frequencies ω_1. Here the subscript 1 denotes the frequency axis ω_1 in the 2D-spectrum corresponding to the Fourier transform with respect to t_1 and should not be confused with $\omega_{RF} = -\gamma B_{RF}$ which is a constant for the 2D experiment. For quadrupole nuclei the nutation frequencies ω_1 depend on the strength of the quadrupole interaction. If $\omega_Q \ll \omega_{RF}$, then the transverse magnetization responds to the RF pulse like spin-1/2 nuclei; thus, $\omega_1 = \omega_{RF}$. If $\omega_Q \gg 10 \omega_{RF}$, the central transition can be treated as a two-level system and one nutation frequency is expected, but this frequency is increased by a factor $(\delta + 1/2)$; i.e. $\omega_1 = (I + 1/2) \omega_{RF}$ (see Eq. (2.34)). For the intermediate case in the range $1 < \omega_Q / \omega_{RF} < 100$, the nutation spectra reflect the influence of the partly excited outer transitions. The ratio $r = \omega_Q / \omega_{RF}$ is varied as the parameter for the acquisition of the nutation spectra.

NMR nutation spectroscopy of quadrupole nuclei has been reviewed in the past [11, 15, 16] and recently by Kentgens [17]. In the NMR, nutation was substituted by other techniques at the beginning of the current century. Only in NQR is the nutation spectroscopy of quadrupole nuclei still in use [18].
2.7 Two-pulse Free Induction Decay

The two-pulse free induction decay monitors the quadrupole interaction similar to the nutation technique. The information of the first-order quadrupole interaction is transformed onto the central transition intensity by two pulses [11] as first reported in Ref. [19]. At the beginning, the quadrupole nucleus is excited by a hard pulse with $\omega_{RF} \tau \ll 1$. Then, immediately after the pulse there appear $2I$ components of magnetization, polarized in the x-direction. These $2I$ components have a resonance offset $\Delta \omega$ in the rotating frame due to the first-order quadrupole interaction:

$$\Delta \omega = \left[2m + 1 \right] \omega_Q^l t,$$

where m runs from $-I, -I + 1, \ldots, I - 1$, see Eq. (2.22). The x-components of these polarizations vary with $\cos \left[\left(2m + 1 \right) \omega_Q^l t \right]$. A second hard pulse at time $t = t_1$ creates a new x-component formed by spins that are still in the z-direction after the first pulse. Then, with respect to the polarizations created by the first pulse, it affects only spins polarized in the x-direction, the number of which is proportional to $\cos \left[\left(2m + 1 \right) \omega_Q^l t_1 \right]$, at the time $t = t_1$. Hence, depending on the time delay between the pulses, a varying number of spins forming the satellite transitions will be transferred into the central transition. Since these contributions are sinusoidal in $\omega_Q^l t_1$ the intensity of the central transition is modulated by $\cos \left[\left(2m + 1 \right) \omega_Q^l t_1 \right]$. A second Fourier transform of the dependence of the intensity of the central transition on the pulse length t_1 should give definite contributions at frequencies $\omega_m = (2m + 1) \omega_Q^l$.

A theoretical analysis of this effect has been reported [19, 20] for the case of nonselective pulses, the phase shifting between pulses has been discussed, and information about the quadrupole parameter of 27Al in powdered alum, corundum, and low-cristobalite has been obtained. Man [21, 22] described the experiment for $I = 3/2$ with the fictitious spin-1/2 operator formalism using two in-phase RF pulses with a short delay between them and variable length of the second pulse, and in addition, with an alternating pulse phase and alternating receiver phase [23]. The quadrupole coupling of 23Na in powdered NaN_3 [22] and of 7Li in a single crystal of LiTaO_3 [21, 23] were studied by the dependence of the central line intensity on the width of the second RF pulse. Man performed several studies by means of this technique, calling them two-pulse nutation experiments; see http://www.pascal-man.com/presentation/two-pulses.shtml#-1. However, the term nutation is misleading here, since the development takes place between the pulses in the absence of RF irradiation. The last study was devoted to 51V nuclei in a single ferroelastic crystal of BiVO_4 [24]. It should be noted that the t_1 increment has to be one rotation period, or a multiple of it, if MAS is also to be applied.

2.8 Cross Polarization and DNP for Correlation Studies and Signal Enhancement

Cross polarization (CP) was introduced as an excitation technique by Hartmann and Hahn [25] and was applied to the proton-enhanced NMR of dilute spins in solids by Pines, Gibby and Waugh [26]. A detailed discussion of CP experiments can be found in the textbook by Slichter [27], pp. 277. CP of half-integer quadrupole nuclei was first applied by S. Vega [28] to single crystals and is discussed in his recent review [29].

The combination of CP with MAS is widely used for the polarization transfer in solid-state NMR, mainly from 1H to low-sensitivity spin-1/2-nuclei, and provides increased sensitivity for the MAS spectra of the low-sensitivity spin-1/2-nuclei, which mostly have a longer longitudinal relaxation time than 1H nuclei. Its application to quadrupole nuclei with half-integer spins is now established as well. It is more used for spectral editing than for enhancement of sensitivity, since the T_1 of quadrupolar nuclei is typically shorter than that for 1H nuclei. About 200 27Al[1H] CP MAS NMR studies were published after the first paper by Blackwell and Patton [30]; other quadrupole nuclei with half-
integer spins were also excited by CP. Heteronuclear correlation (HETCOR) studies using CP for mixing between 27Al and 31P nuclei in both directions were introduced by Fyfe et al. [31]. Beginning with the study of Pruski et al. [32], CP has been used for spectral editing of multiple-quantum (MQ) MAS NMR spectra in about 20 published studies. The polarization transfer is performed from 1H, 19F or 31P nuclei and limited to the central transition of the quadrupolar nucleus, Q, with spin I in the majority of studies and the opposite direction in a few. The mixing pulse for CP is relatively long and accordingly has a relatively narrow bandwidth. In this case, the Hartmann-Hahn condition [25] requires equality between the nutation frequencies of the 1H nuclei, ω^H_{RF}, and of the quadrupolar nuclei for selective excitation, $\omega^Q_{RF}^{sel}$ (see Eq. (2.34)):

$$\omega^Q_{RF}^{sel} = (I + 1/2) \omega^Q_{RF} = -(I + 1/2) \gamma^Q B^Q_{RF} = - \gamma^H B^H_{RF} = \omega^H_{RF}. \quad (2.37)$$

A.J. Vega [33, 34] considered the spin dependence of CP MAS NMR of spin-3/2 nuclei on the ratio $\alpha = \nu^H_{RF}/\nu^Q \nu_{rot}$. He found a greatly reduced spin-lock efficiency for the intermediate case $\alpha = 4$ and more efficient polarization transfer for $\alpha \gg 1$ and $\alpha \ll 1$. However, an upper limit of α is given by the overlap of sidebands for slow spinning speeds. In the limit of fast spinning, the Hartmann-Hahn matching must satisfy a sideband condition,

$$\nu^H_{RF} = (I + 1/2) \nu^Q_{RF} \pm n \nu_{rot} \quad (2.38)$$

with $n = 1, 2$. The important result of these studies [33, 34] is that for strong quadrupole coupling the fastest possible spinning speed is recommended.

The Hartmann-Hahn condition [23] for CP from 1H to low-sensitivity spin-1/2-nuclei can be adjusted using standard compounds, e.g. adamantane and Q_8M_8 for 13C and 29Si[1H] CP MAS NMR, respectively. Similar standard compounds are not conventional for quadrupolar nuclei. Eq. (2.38) allows a basic setting for the mixing pulse. Then, a linear ramp pulse from 84% to 100% (1.5 dB) and a variation of the proton channel transmitter attenuation in 1-dB steps can be used for exact adjustment.

The excitation problem for broad signals will be discussed in Section 2.9. The same problem exists for cross polarization, if it involves signals that cannot be excited by a single monochrome pulse. Harris et al. [35] introduced the BRAIN-CP experiment (broadband adiabatic inversion CP), which makes use of the broad, uniformly large frequency profiles of chirped inversion pulses, in order to overcome this problem for spin-1/2 nuclei.

A review of CP correlation experiments involving half-integer quadrupolar nuclei was recently published by Deschamps and Massiot [36]. MQMAS experiments with CP between quadrupolar and spin ½ nuclei in both directions were reviewed by Amoureux and Pruski [37]. The number of studies concerning CP between two different quadrupolar nuclei is rather limited. Examples are the studies of aluminoborate glasses by Chan et al. [38] and of corundum (aluminum to oxygen CP) by Haase and Oldfield [39].

Dynamic nuclear polarization (DNP), [1] p. 338, transfers the relatively high spin polarization of unpaired electrons to coupled nuclear spins using microwave irradiation near the EPR frequency. Developments in instrumentation for cryogenic MAS and high-power microwave sources at the extremely high EPR frequencies expanded DNP experiments to high-field solid-state NMR investigations [40]. An example of the enhanced solid-state NMR correlation spectroscopy of 27Al using DNP was presented by Lee et al. [41]. DNP-enhanced interface-selective DQ-SQ homonuclear dipolar correlation 27Al MAS NMR spectra were measured at 103 K and showed the correlations of AlO_4, AlO_5 and AlO_6 species in mesoporous alumina [41]. Michaelis et. al. [42] demonstrated the dynamic nuclear polarization of 17O nuclei. Blanc et al. [43] and Perreras et al. [44] reported about natural abundance 17O DNP two-dimensional experiments. Bouleau et al. [45] described DNP
experiments including quadrupolar nuclei at temperatures down to 30 K and MAS frequencies up to 25 kHz. Kobayashi et al. [46] discussed DNP applications with quadrupolar nuclei in heterogeneous catalysis research. Lund et al. [47] reported about DNP targeting catalytically active 27Al sites. Valla et al. [48] confirmed by DNP that in amorphous aluminosilicates molecular Al and Si precursors are preferentially connected to Al(IV) and Si(IV) interfacial sites, respectively.

2.9 Adiabatic Passage and Excitation by Modulated Pulsing

The high-temperature approximation $\hbar \nu_L \ll kT$ with Boltzmann’s constant k applies at least for temperatures above 4 K and Larmor frequencies below 4 GHz. Thus, in NMR spectroscopy spontaneous emission can be neglected. The probabilities for absorption and induced emission are equal and depend on the population p of the two considered energy levels. Using the Boltzmann distribution $\exp(-\hbar \nu_L / kT) / \sum_m \exp(-\hbar \nu_L / kT)$ in the thermal equilibrium, we can calculate the population ratio for the Zeeman splitting of the $m \to m+1$ transition (see [1] p. 133):

$$\frac{p_{m+1}}{p_m} = \exp\left(-\frac{\hbar \gamma B_0}{kT}\right) = \exp\left(-\frac{\hbar \nu_L}{kT}\right) \approx 1 + \frac{\hbar \nu_L}{kT}. \quad (2.39)$$

For $(p_{m+1} - p_m)/p_m$ we obtain a relative population difference of $\hbar \nu_L/kT$; for $\nu_L = 600$ MHz and $T = 300$ K, this amounts to about 1×10^{-4}. As an example, we consider under these conditions a spin-5/2 nucleus with a positive gyromagnetic ratio and apply an arbitrary normalization of $p_{-5/2} = 10001$ for the highest energy level $m = -5/2$. Then we have populations of 10 001, 10 002, 10 003, 10 004, 10 005, and 10 006, for $m = -5/2, -3/2, -1/2, 1/2, 3/2, 5/2$, respectively. The excitation of the central transition is based like any single-quantum transition on a population difference one at this scale. But a sequence of adiabatic population inversions, from $-5/2$ to $-3/2$, from $-3/2$ to $-1/2$, from $5/2$ to $3/2$, and finally from $3/2$ to $1/2$, would give a population difference of five and thus a five-fold sensitivity for the central transition.

Adiabatic passages are well known in NMR; see Abragam [1] p. 35. Figure 2.3 shows the way the frequency can be stepped through the region of resonances by changing the offset. This should be done slowly enough that the density operator can follow the Hamiltonian. A criterion for adiabatic inversion is given by the adiabaticity factor [49]:

$$Q(t) = \frac{\gamma B_{\text{eff}}(t)}{|d\theta(t)/dt|} \quad (2.40)$$

with θ as the inclination of B_{eff} with respect to the $+x$ axis in the rotating field. It is recommended that the adiabaticity factor for a linear sweep is greater than or equal to 5 [49]. For WURST or HS pulses an adiabaticity factor of 5 should be applied [2].

Fig. 2.3. The energy, $E = m \Delta \nu h$, of the spin states m as a function of the resonance offset, $\Delta \nu$, in the rotating system for an $I = 5/2$, single crystal with the z-axis of EFG coinciding with B_0, no sample rotation, $\nu_Q = 300$ kHz, $\nu_{RF} = 10$ kHz [50]. A crossing of lines as shown in the picture occurs for vanishing RF fields. The RF causes a level repulsion. The circles mark regions of avoided crossings for $\Delta m = 1, 2, 3$. The figure inset shows the level repulsion at the crossing of the $-1/2$ and $+1/2$ levels with an energy gap.
of $3h_{\nu}$RF between the upper and lower branches. The effective RF amplitudes of other level transitions depend on h_{ν} as well [50].

We go to Fig. 2.3. Beginning at $m = -5/2$ and switching off the RF power at the Larmor frequency creates a single-quantum coherence like a $\pi/2$ pulse applied to a spin-1/2 system. A full passage from $m = -5/2$ to $m = 5/2$ is comparable with a nonselective π pulse. This means that adiabatic passages can overcome the problem of ill-defined excitation in cases of strong quadrupole interaction. Eigenstate diagrams like Fig. 2.3 for $I = 1$ and 3/2 were presented by A. J. Vega [29].

The exclusive detection of the $\pm 1/2 \leftrightarrow \pm 3/2$ transitions, based on central-transition signal enhancement by means of an adiabatic RF sweep, was introduced by McDowell et al. [51] in order to simplify spectra and increase their intensity. A different approach to intensity enhancement by population transfer between Zeeman levels of the quadrupole spin system with selective pulses and adiabatic frequency sweeps was applied to 63Cu in superconductors by Haase et al. [52].

Kentgens [53] established in 1991 the quantitative excitation of a half-integer spin system by a frequency-stepped adiabatic half-passage (FSAHP) on the basis of the approach of Sindorf and Bartuska [54], and introduced in 1999 [55] double-frequency sweeps (DFS) in static, MAS and MQMAS NMR experiments on the basis of an appropriate time-dependent amplitude modulation to the carrier frequency, which was applied earlier by Fu et al. [56] to integer spin systems in single crystals. A convergent DFS can be generated by a modulation of the RF, which causes two sidebands that are swept from a start frequency in the region of the outer satellites to reach a final frequency, where the spectral range of the central transition begins. Gains of 1.9 for 23Na and 2.5 for 27Al MAS NMR spectra have been achieved experimentally [57].

The excitation can be also enhanced by the application of fast RF amplitude modulation (FAM), which was introduced by Goldbourt et al. [58, 59] for MQMAS; see Section 5.4. DFS uses an easily adjustable frequency modulation, and FAM uses amplitude modulation, which can be performed on spectrometers for which frequency modulation of the short RF pulse is not feasible. There is no difference between DFS and FAM from a physical point of view, since frequency and phase modulations of the RF can give the same result. FAM was improved by Bräuniger et al. [60], and a more recent version SW(\tan)-FAM [61] uses frequency-swept fast-amplitude-modulated pulse trains with a tangent-shaped sweep profile.

NMR transitions can be saturated by irradiation with the corresponding RF frequency. Saturation of a transition yields equal populations of the two involved eigenstates. A hypothetical selective saturation of all satellite transitions in a spin-5/2 system would lead in the example above to populations of 10 002, 10 002, 10 002, 10 005, 10 005, and 10 005, for the levels -5/2, -3/2, -1/2, 1/2, 3/2, and 5/2 , respectively. The population difference for the central transition would increase from one to three. The corresponding increase for spin 3/2 nuclei amounts to two. Yao et al. [62] used for the satellite saturation a fast 180°-phase alternating pulse train in MAS experiments and called this approach rotor-assisted population transfer (RAPT). Enhancements of 1.7 and 1.9, near the theoretical value of 2.0, were obtained [62] for 23Na in Na$_2$C$_2$O$_4$ and 87Rb in RbClO$_4$ powders, respectively. It should be noted here that the experimentally obtained enhancements for DFS described above are lower than the theoretical values, 5.0 for spin 5/2 and 3.0 for spin 3/2. DFS provides only enhancements of the order which is expected for the saturation of the satellite transitions.

Silver et al. [63] found that using as a driving function a complex RF pulse with an envelope of the form of a hyperbolic secant (HS) function of time, while the phase varies as a hyperbolic cosine function, resulted in a population inversion with a very sharply defined bandwidth. The phase modulation yields a hyperbolic tangent function over the frequency range, and the magnetization as a function of the frequency gives a nearly rectangular shape. Siegel et al. [64] introduced HS pulses for the signal enhancement of NMR spectra of half-integer quadrupolar nuclei. A comparison
between HS and DFS for spin-5/2 nuclei [65] gave almost similar enhancements for static powder and a slightly better value of 3.1 for HS than 2.5 for DFS, normalized by 1.0 for the rectangular pulse without modulation. Nakashima et al. [4] explained that it is most useful to choose such an offset that the frequency of the HS pulse is positioned in one of the satellites. In a recent review Nakashima and Wasylishen [3] described the sensitivity enhancement by application of HS and other modulated pulses. They conclude [3]: «One simply adjusts the bandwidth of the HS pulse to the MAS frequency and for Spin-3/2 systems, centers the HS pulse near the estimated value of $C_0/4$.» This demonstrates an important point regarding the sophisticated methods for enhancing the sensitivity of quadrupolar nuclei: It is useful to know the result before starting the experiment.

Carnevale and Bodenhausen [66] presented a composite pulse consisting of $3 \leq n \leq 7$ rectangular pulses τ_x, $2 \tau_x$, $3 \tau_x$, \ldots, $n \tau_x$ which caused a time-dependent amplitude modulation where the modulation frequency decreases with time. They denoted it as COMPACT-n (composite pulses adapted for central transitions) and obtained a signal enhancement factor of about 1.4 for the central transition [66].

Another NMR technique that uses adiabatic passage in combination with rotational echo and double resonance was introduced by Gullion [67]. He combined the principles of rotational-echo double resonance (REDOR), with the transfer-of-populations double-resonance (TRAPDOR) developed by Grey et al.[68, 69]. The so-called REAPDOR (rotational echo adiabatic passage double resonance) technique allows first, like TRAPDOR, the indirect detection of signals which are too broad to be directly observable for the single-resonance observation of the quadrupole nucleus, and second, like REDOR, the measurement of distances between spin pairs. A review was written by Gullion and A.J. Vega [70]. A similar dipolar recoupling experiment for samples that are not spinning at the magic angle was introduced as SEDOR (spin-echo, double-resonance) [71].

Some additional MQMAS NMR techniques that use adiabatic passage for excitation and conversion will be discussed in Section 5.

Spin decoupling is widely used in solid-state NMR, and spectra of quadrupolar nuclei also make use of applications of heteronuclear spin decoupling as first shown by A.J. Vega [34]. This is not considered in the present review. Such literature is included in the study of Candran et al. [72]. They compared the decoupling efficiency of various multi-pulse decoupling sequences at moderate MAS speeds and found that the frequency-swept decoupling schemes SWf-TPPM and SWf-SPINAL perform significantly better than the conventional TPPM and SPINAL sequences [72]. We note it here, since the frequency-swept decoupling schemes belong to the topic of modulated pulsing.

2.10 Excitation for Very Broad Signals

The term **broad-line NMR** was used until the seventies as the antonym of **high-resolution NMR**. Since that time the two technically different branches of NMR have converged, and the term **broad-line NMR** in its old meaning disappeared. Broad NMR signals, which can be fully excited by one short pulse, do not require a special broad-line technique. A rectangular $\pi/2$ pulse of 1-µs duration has an excitation bandwidth of about 1 MHz (see Eq. (2.07)), but low-gamma nuclei require a longer $\pi/2$ pulse with reduced bandwidth. We still need methodologies for the acquisition of very broad signals, for which the name ultra-wideline (UW) NMR spectroscopy was introduced by Tang et al. [73, 74]. A review of this field was recently written by Schurko [75].

The frequency stepped echo technique requires 30–100 echo measurements with different offsets. The spectrum is presented by the echo amplitude as a function of the offset. The amplitude can be measured directly or determined by the total intensity of its Fourier transformed spectrum. The retuning of the probe after the change offset is an obstacle for automatic measurement.
Massiot et al. [76] introduced VOCS (variable-offset cumulative spectrum). They reduced the number of measurements by increasing the spacing between different offsets, Fourier transformed the full-echo FIDs, and added the obtained single spectra to a full powder pattern. Medek et al. [77] showed that by means of spin-echo sequences with short and very weak RF pulses, most of the crystallites within the bandwidth of interest can be excited, which enables the acquisition of ideal-like static line shapes even for megahertz-wide central transition patterns.

The quadrupole version QCPMG of the Carr-Purcell Meiboom-Gill pulse sequence [78, 79] will be discussed in Section 3.8. Some studies combine VOCS and QCPMG [80]; see also [75]. The transmitter offset increment has to be a multiple of the Carr-Purcell spikelet distances. O’Dell and Schurko [81] applied a combination of QCPMG and WURST and measured a 500-kHz broad uniform excited 71Ga NMR spectrum of gallium phthalocyanine chloride. Later O’Dell et al. [82] obtained, by a VOCS-style frequency stepped WURST QCPMG pulse sequence, a 3-MHz broad 65Cu spectrum of (PPh$_3$)$_2$CuO$_2$CCH$_3$ and claimed that «frequency stepped WURST–QCPMG is the most efficient way of obtaining ultra-wideline NMR spectra from quadrupolar nuclei yet reported».
2.11 References

